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Abstract

The work on the serpentine inspection system at

- JPL is described. The configuration of the inspection =

system consists of 20 DOF in total. In particular,

: the design and development of the serpentine micro- .
manipulator end-effector tool which has 12 DOF is de-

scribed. The inspection system is used for application

in JPL's Remote Surface Inspection project and as a

research tool in redundant manipulator control.

1. Introduction ........

For several years, the Jet Propulsion Laboratory

(JPL) has been performing research and development
in remote surface inspection of space platforms such

as Space Station Freedom [1]. One of our goals was to

develop technology to inspect remote, hard-to-reach
locations. Our experimental facility contains a 1/3-

sized mockup of the Space Station truss structure with
various devices attached. The structure is cluttered

with different types of objects such as an Orbital Re-

placement Unit (ORU) and a thermal radiator. The

t_ks to be performed range from visual inspection by

maneuvering inside of narrowly confined areas and de-

tecting anomalies to temperature and gas leak detec-
tion. One such scenario is moving behind a radiator

panel and searching for electrical damages. Others
include detection of broken interfaces such as discon-

nections in fluid, gas (leaks), or electrical lines and
improper mating of connectors. There are some light

manipulation tasks which are required to diagnose,

service, and repair devices attached to the space struc-

ture. Some of the manipulation tasks include spot

cleaning, foreign object debris location and removal,

and removal/installation of straps and caps for lenses
or containers.

Conventional robots typically consists of 6 Degrees-

of-Freedom (DOF), and are not capable of performing
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Figure 1:OverallInspectionSystem and the Hardware
Architecture

some of the required remote inspection tasks. At JPL

a highly redundant robot inspection system consist-

ing of 20 DOF will be utilized. The idea is to attach a
smart end-effector tool that has a long-reach serpen-
tine feature at the end of a conventional robot. This

arrangement is referred as a compound robot-- the ser-
pentine robot is the micro-manipulator, and the base

robot is the macro-manipulator. Figure 1 shows this

configuration. Note that the 7 DOF of Robotics Re-
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searcharmismountedona 1DOFmobilebase.The
macro-manipulatorcanbe thoughtof asaglobalpo-
sitioningdevice,whilethemicro-manipulatorcanbe
viewedasa finemanipulatorrestrictedto operatein
a localregion.In thispaper,thedesignanddevelop-
mentoftheserpentinemicro-manipulatorisdescribed.
(seeFigure2).

SelfApproachSystemin1982.A camerawasmounted
on thetip of this 16DOFtendon-drivenmechanism
to performinspection.In theUnitesStates,notable
worksincludeAndersonandHorn[5]whobuilt a 16
DOFtensorarmfor ScrippsInstituteof Oceanogra-
phy in 1964.ChirikjianandBurdick[6]of Caltech
built a 30DOFvariablegeometrytrussmanipulator
to validatehyper-redundantarmcontrolalgorithms.
Berka[7]performedresearchin multi-segmentrobots
for NASA'sJohnsonSpaceCenter.

Figure2: TheJPLSerpentineRobot

2. Background

Workin serpentineroboticsdatesbackapproxi-
mately30years. Namely,the Japanesecompanies
suchasToshiba,Mitsubishi,andHitachihavedone
a lot of workin thisareafor applicationin thenu-
clearpowerindustry.Hirose[2]ofTokyoInstituteof
Technologydevelopeda numberof snake-likemecha-
nisms,for example,acrawlingmechanismwhichuti-
lizesobliqueswiveljoints. Asano[3]built Toshiba's

3. Serpentine Robot Design

At theendofthemacro-manipulator,anintegrated
sensor/end-effector(ISEE)unitisattached[4].It con-
tains2 lipstickcameras,2 proximitysensors,a gas
sensor,a temperaturesensor,a force/torquesensor,
andtwolightfixtures.Thisunit is toobulkyto enter
insideofthemockuptrussstructure.Toovercomethis

- restriction,a serpentinerobot that can function as a

smart end-effector tool was designed. The serpentine

robot would be picked up by the macro-manipulator

= when additional dexterity is required to perform the
- task.

A number of design issues were considered before

building the serpentine robot. The issues and their
resolutions are discussed as follows.

A. Weight and Size

Since the serpentine robot is to be attached at the

end of another robot, weight and size needed to be
minimized.

Motor Selection: Miniature, yet high torque mo-

tors were needed. Motor manufacturers such as Escap,
Maxon, and MicroMo were considered. MicroMo's 2
watt DC motors were chosen. Based on ironless core

technology, these products have the feature of high

efficiency with low mechanical time constants. The

motors have stall current of 890 mA, and due to their

low inductance, electrical noise is reduced.

Joint Assembly: The joint design needed to be com-

pact. If the conventional method of mounting the mo-
tors on the joints were adopted, the serpentine robot

would have had a bulky design. A patented design
owned by the NEC Corporation was chosen. This de-

sign allows all motors to be mounted inside of the joint

housings.

The original design is an active universal joint based
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train is non-backdriveable for reduced power consump-

tion. Maximum torque at each DOF was theoretically

computed to be 90 in-lb, which was experimentally

verified. Figure 4 and Figure 5 reveal the internals of

the joint assembly.

J
Motor 1

Figure 3: Joint Assembly

on work by Ikeda and Takanashi of the NEC Corpo-

ration (U.S. Patent No. 4,683,406). Our mechanism
was made more compact by modifying their design.

The basic idea is illustrated in Figure 3. The joint as-

sembly has two shafts, with each shaft attached to a

half-sphere at an oblique angle. The two half-spheres

are joined together to rotate freely with respect to

each other. This arrangement is contained inside a

universal joint with each shaft joined to one side of
the frames that make up the universal joint. The mo-

tors rotate the two shafts thereby actively changing
the orientation of the universal joint. Both motors

are controlled simultaneously to change the orienta-

tion. Now consider the Spherical coordinate system.
When the motors are rotated in the same circular di-

rections, the joint assembly makes a motion along the

¢ direction. If the motors are rotated in opposite di-

rections, then the joint assembly makes a motion along

the 0 direction. The motions along the ¢ and 0 direc-

tions make up the 2 DOF movement of the joint. Note

that when the shafts are collinear, a degeneracy (sin-

gularity) occurs.

To achieve high torque, each axis has a gearhead
ratio of 1111:1 (high gear ratio was achieved by build-

ing our own custom planetary stages). Two redundant

motors which are mechanically coupled turn each axis

and provide double the torque of one motor. The gear-

O

O

O

O

Figure 4: Components of the Serpentine Joint

B. Reliability and Ease of Control

To reduce the size and weight, building a tendon-

driven mechanism was considered. This approach is

appealing because the actuators can be moved to the
base of the serpentine robot. Since the entire serpen-

tine robot including its base needed to be picked up by

another robot, the overall mass is not saved by using

this approach. In addition, inherent difficulties exist in

dealing with a complicated tendon mechanism. This

type of mechanism typically has a small load capacity,
and it is difficult to model. Problems exist because of
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Theconcernwasmoreontheelectricalside.

Designingminiaturecircuitstofit insideofthejoint
housingwasconsidered.Theelectronicswouldpro-

.. vide the functionalities of a motor amplifier and a de-

.... coder for encoder signals. In designing a linear am-

plifier, elimination of heat generated by the electron-

ics would create a problem since insufficient volume
exists for air ventilation. Even a cooler PWM-based

amplifier that employs miniature H-bridges could not

be contained, since the size of all of its electron-
ics would exceed the size of the joint housing (a

cylinder of 1.5 inches in diameter with 5.65 inches

height). To generate control signals, commercially-
available controllers such as the NEC uPD7832x,

Hewlett Packard's HCTL-1100, and LM628 chips were

considered. Circuit designs based on any of these chips

would exceed the size of the joint housing.

The option to route all the wires out of the robot
was chosen. The motors will be controlled remotely

from externally located VME hardware. Routing all

wires internally through the center hole posed another

problem -- cabling. Because 23 motors exist inside
of the serpentine robot, the number of through-hole
wires had to be minimized. The wire count was re-

duced at each DOF by connecting two motors in par-

allel to share motor voltage lines and by sharing com-

mon power lines for all motors. See Figure 6 for the

wiring diagram.

For external VME control of the motors, off-the-

-__ shelf hardware were purchased. Because of the mo-
tor's low inductance, linear analog amplifiers rather

than PWM types were chosen as motor drives. Mo-
tor controller hardware were purchased to work in the

VMEbus environment.
Figure 5: Internals of the Joint Assembly showing the

Planetary Stages D. Acquiring Visual Data and Lighting

the need for flexible control to compensate for elas-

ticity. Finally, low reliability results due to frequent

tendon breakage.

A method of direct motor control was chosen. Al-

though the problems associated with high gear ratio
will have to be dealt with, better reliability would be

obtained.

C. Modularity

The mechanism was designed to be mechanically

modular -- the joints can be easily added or sub-

Mounting a small lipstick camera (e.g., Toshiba

Model IK-M41A) at the tip of the serpentine robot
was considered. This approach has associated prob-

lems with wiring and lighting. The diameter of the
camera's cable far exceeds the size of the through-hole.

Furthermore, the standard way of providing light for

the camera is to resort to installation of light fixtures.

But since the light fixtures are typically larger than
the lipstick cameras, the size advantage of using the
miniature cameras would be lost.

Using a borescope was ideal for our purpose. A

borescope is designed specifically for visual inspection
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applications.It is commonlyusedin medicalsurg-
eriesandaircraftengineinspections.Thevideoimage
of theworksite is passedthroughits fiberopticca-
bleandis sentremotelyto theviewer-- mostof the
visionhardwareis locatedawayfromtherobot'send-
effector,hencemovingthebulkinessawayfromthe
worksite.

The MachidaFBA-3-140flexibleborescopewas
chosen.Thefiberopticcablehasa diameterof 0.138
inch(3.5mm)and55incheslong. With a through-
holeof0.312inch(5/16inch),boththeborescopeca-
bleandrequiredcontrolwireswereroutedinternally.
Thescopehasafieldofviewof 50degreesminimum
anda depthoffieldof 5to 50mm.

Theborescopeis capableof 1DOFmotion.The
tip isarticulatedbymanuallymovingtheleveratthe
eyepiecewhichpullsthe cablesattachedto thetip.
It is capableof a rangeof motionfrom-100to 100
degrees.Thefunctionof theleverwasmotorizedby
installingamotorat thebaseoftheserpentinerobot
to pullthecables.A workingchannelcanbemounted
alongthesideof theborescopeto allowremoteuse
ofsmalltools,for instance,agraspingtoolto retrieve
foreignobjectsandagrindingtooltosmoothsurfaces.
A workingchannelmaybe installedin thefutureto
performsimplemanipulationtasks.

An advantageof usinga borescopeis it carriesits
ownlight.Whentheserpentinerobotenterstheinside
of the spacestructure,the environmentis typically
dark. Therefore,to acquirevisualimages,lightingis
required.With the borescope,lightingis built into
thecableandpointsin thesamedirectionasthehead
of theborescope.Sinceourmockupstructurecom-
posedmostlyofmetalswithhighreflectance,minimal
lightfortheborescopewasrequired-- aHalogenlight
sourceservedourpurpose.

Onedrawbackof usingaborescopeisit cannotby
itselfboreintotheworkarea.A commonwayissim-
ply pushingtheborescopeto insertit into thework
area.Toassistin theboringoperation,forexamplein
medicalapplication,guidetubesareavailableto make
possibleinsertionintodifficultplaceswhereobstruc-
tionsor largegapsexist.Theguidesarecontouring
apparatusto makeangledturnspossiblebyconform-
ingto thedesiredinsertionpath.Heretheserpentine
robot canbe thoughtof asa flexibleguidetubefor
theborescope.Theserpentinerobotwill actasacon-
touredplatformfortheborescopeto restonwhilethe
operatorlooksaroundtheworkarea.

E. Mechanical Specifications

Constructed serpentine robot has the following

specifications:

• 3-D Mechanism with Total Weight of 7 lbs

• Extended Reach: 35"

• Diameter of the Robot: 1.5"

• 5 Joints, 10 DOF (each -60 ° to 60 °)

• 1 Roll DOF (-180 ° to 180 °)

• 1 Borescope DOF (-100 ° to 100 °)

• DOF Velocity : 60 degrees/second

• Center-to-Center Joint Distance: 5.65"

• Through-Hole Inside for Cables: 5/16"

F. Macro-manipulator

The larger manipulator is the Robotics Research

Corporation's Model K1207 robot which has 7 DOF.

This arm is mounted on a mobile platform of the lathe-

bed and provides one additional prismatic DOF. In

total, 8 DOF comprise the macro-manipulator.

G. User Interface

The operator will interface with the serpentine

robot from the "cupola," which is the main control sta-
tion of the experimental facility of the Remote Surface

Inspection project. Inside the cupola, one has access
to an IRIS Silicon Graphics workstation, color moni-

tors, and joysticks. The IRIS will act as a graphical

front-end through which the operator interacts with

the serpentine robot in real-time and issues motion

commands in joint or task space. The IRIS can also

create an interactive graphical simulation environment
for analysis and control of the serpentine robot. Us-

ing this dual-mode functionality, the IRIS can be used

in preview mode for animating the task scenario, fol-

lowed by commanding the arm to duplicate the simu-
lated motion.

The operator will view the work site by looking

at the monitors that display video images from the

borescope, and he will command the serpentine robot

by using the joysticks and a graphical menu on the
IRIS.
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4. Serpentine Robot Control System

Industry Pack (IP) Servo modules from Technology

80, Inc. are used to control the motors in a VMEbus
environment. These units are built around National

Semiconductor's LM628 ICs and provide 2 indepen-

dent channels for PID motor control and decoding of
encoder signals. The IP-Servo modules are mounted

on MVME162 Motorola processor boards which are

based on the MC68040 hosts running at 25 MHz. See

Figure 1 for the hardware architecture. To control the
serpentine robot, two Motorola processor boards are

employed to host six IP-Servo modules. The two pro-

cessor boards are plugged into the same VME chassis

that provide VME control for macro-manipulator sys-

tem [8]. Through a shared memory card, command

and status information of the serpentine robot are

passed to the macro-manipulator system. All of the

software executing on the VME environment is writ-

ten in the C language. Code is developed on a SUN
UNIX computer utilizing its resident C compiler and

Wind River's VxWorks/Wind real-time library.

The IP-Servo module produces motor control sig-

nals in the form of voltages. The control signals

are then taken as input to a linear analog ampli-

fier. Portescap's ELD-3503 was chosen. This unit is

a transconductance type of amplifier which is specif-

ically designed to drive ironless motors. It produces

up to 2.5 Amps of current and drives up to 35 Volt

motors with a single DC power supply.

5. Future Work

In the near future, kinematic analysis will be per-
formed to achieve Cartesian control of the serpentine

system. In the process, a scheme to resolve redun-

dancy of the mechanism would have to be devised

to allow a task to be performed by allowing coopera-

tion between the macro- and micro-manipulators. One

possible scenario is to allow cooperation between the

two manipulators to avoid obstacles by having each
manipulator to executing a separate redundancy reso-

lution scheme with a different objective function. Sec-

ond, control experiments will be performed and any
instability problems will be resolved. Problems asso-

ciated with high gear ratios may exist, and instability

may be attributed to the joint assembly since the joint

angles are indirectly controlled by motor angles.

Many practical issues need to be dealt with before

a three dimensional serpentine robot can be used for a

teleoperation task. The manipulation task is difficult,

since the operator is maneuvering the robot inside a

narrow-spaced workspace and the objects that are of

interest to him are often visually obstructed.

Sensors are crucial in helping the operator to per-

form inspection. The borescope inside of the serpen-

tine robot will provide the main visual feedback to

the operator. An additionM camera can be attached

to one of the intermediate links of the serpentine robot

to provide the operator with a wider view of the work

area from a different perspective. Other sensors such

as proximity sensors can be used to detect and avoid
obstacles.

The tip of the borescope should be placed such that

it is jitter-free (statically stable) to take still images
and to be optimally positioned for collision avoidance.

In this scenario, the active perception problem of mov-

ing the cameras (sensors) would have to be examined
to obtain more information about the environment as

the task progresses.

The system requires a man-machine interface capa-

bility to control the motion of the micro- and macro-

manipulators collectively or individually, control the

viewing angles attached to the serpentine robot, and
ability to work with a world model of the environment
for collision avoidance.

Knowledge-based systems can be integrated into

the inspection system. In order to guide the serpentine

robot, the computer can assist the operator in control-

ling the camera viewing and lighting angles. Once the

operator selects an object/feature, the system can au-

tomatically adjust the camera viewing angle (aligning

to the normal of the surface and to have the greatest
visibility) as well as the lighting angle and intensity
for the best view.

In addition, being preoccupied with a difficult tele-

operation task at hand, the operator should not have
to be concerned about kinematic anomalies such as

singularities and joint limits. The operator needs only

to specify the trajectory Of the head of the serpentine
robot; the trajectory of the rest of the body should

be computed autonomously with some guidelines from

the operator.

All of the above requirements can be incorporated

into a global scheme to resolve the kinematic redun-
dancies of the micro- and macro-manipulators.
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